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Abstract

We propose a principle—Ted’s Law of Karma—stating that the covariance structure of en-
tropy streams reveals the shared fate of interdependent systems. By measuring entropy over time
for multiple signals and computing their covariance matrix, the dominant eigenvalue λ1 captures
the degree of systemic alignment of uncertainty. We demonstrate this with a toy example and
discuss implications for site reliability engineering, complex systems, and AI safety—including
a concrete operationalization of Geoffrey Hinton’s call for a “maternal instinct” in AI systems.

1 Introduction

Complex systems rarely fail due to one signal alone. Failures arise when uncertainties across
subsystems align. In philosophy, this interdependence is described as karma. In information theory,
it can be captured through entropy and covariance.

This paper introduces Ted’s Law of Karma, unifying these perspectives into a measurable
framework.

2 Ted’s Law of Karma

Statement: The covariance structure of entropy streams reveals the shared fate of interdependent
systems.

Formally, given n metric time series {xi(t)}, define entropy streams

Hi(t) = −
∑
k

pi,k(t) log pi,k(t),

where pi,k(t) is the empirical distribution of values in a rolling window.
Construct the covariance matrix

ΣH(t) = Cov(H1(t), H2(t), . . . ,Hn(t)).

Let λ1(t) ≥ λ2(t) ≥ · · · ≥ λn(t) be eigenvalues of ΣH(t). A spike in λ1(t) indicates the emergence
of a systemic mode of shared uncertainty.

3 Toy Example

We generate three synthetic entropy streams:

1. Independent noise (baseline).

2. Coordinated disturbance introduced at t = 50.

Expected result: Under independence, λ1 remains small. When coordination occurs, λ1 spikes.
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Figure 1: Toy example: entropy streams (top) and λ1 of ΣH(t) (bottom). Spike at t = 50 reveals
systemic alignment.

4 Implications

4.1 For SRE

Eigenvalue spikes anticipate incidents by detecting alignment of uncertainties across metrics before
threshold-based alerts fire.

4.2 For Complex Systems

Suggests a general mechanism for cascades: emergent failures are preceded by eigenmodes of entropy
alignment.

4.3 For AI Safety

Provides a formalization of “maternal instinct” as sensitivity to entropy covariance. Systems can
bias toward protective actions when shared uncertainty increases.

5 Future Work

� Formalize within information geometry or statistical physics.

� Test across domains: ecosystems, economies, neuroscience.

� Embed entropy-covariance sensitivity in reinforcement learning agents.
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6 Conclusion

Ted’s Law of Karma compresses a universal idea: shared fate is visible in the covariance of entropies.
This framing connects information theory, operations practice, and AI safety.

Appendix A: Maxwell-Style Formulation of Ted’s Law of Karma

Entropy fields. For metric streams indexed by i = 1, . . . , n, define rolling Shannon entropy hi(t)
on a window. Stack as h(t) ∈ Rn. Let Σ(t) = Cov[h(t)] denote the covariance of entropy streams.

C1. Continuity (balance) of entropy

Each stream balances sources, damping, flux, and noise:

ḣi = si − κihi −
∑
j

∇· Jij + ηi, (1)

where si are exogenous sources, κi≥ 0 damping, Jij uncertainty flux from j→ i, and ηi noise.

C2. Constitutive law (flux response)

Linearizing around a baseline, flux follows gradients/couplings (Fick/Fourier analogue):

Jij = −Dij (hj − hi) =⇒ ḣ = −αh − β Lh + s + η, (2)

where L is a graph Laplacian over metrics, with α, β≥ 0.

C3. Correlation evolution (Lyapunov dynamics)

Write ḣ = Ah+ η with A = −(αI + βL). Then

Σ̇ = AΣ+ ΣA⊤ +Q − Γ(Σ), (3)

where Q = Cov[η] (drive) and Γ(Σ) represents control (e.g., autoscaling/rate-limits). In discrete
time:

ht+1 ≈ Atht + εt, Σt+1 = AtΣtA
⊤
t +Qt − Γt. (4)

C4. Alignment law (Gauss-style)

Define alignment density as off-diagonal mass or via the dominant eigenvalue:

ρalign(t) =
∑
i ̸=j

wij Σij(t), λ1(t) = λmax

(
Σ(t)

)
. (5)

Alignment accumulates from couplings and noise, and is drained by control:

d

dt
ρalign = Φcoupling(A,Σ) + tr(WQ) − tr(WΓ). (6)

3



Eigenmode monitor (operational early warning)

Let u1(t) be the unit eigenvector for λ1(t). From (3):

λ̇1 = u⊤1 Σ̇u1 ≈ u⊤1
(
AΣ+ ΣA⊤ +Q− Γ

)
u1. (7)

If the symmetric part Sym(A) = (A+A⊤)/2 loses damping (critical slowing), the AΣ+ ΣA⊤ term
becomes positive, and λ1 rises—the measurable “karma spike.”

Fitting recipe (discrete-time, practical)

1. Compute hi(t): rolling Shannon entropy for each metric.

2. Fit VAR(1): ht+1 ≈ Atht + εt on a sliding window.

3. Estimate Qt = Cov[εt].

4. Propagate covariance: Σt+1 = AtΣtA
⊤
t +Qt.

5. Monitor λ1(t), tr(Σ), and off-diagonal mass; trigger alerts or protective bias when λ1 spikes
above baseline.

Summary. These equations encode Ted’s Law of Karma as a dynamical system: entropy streams
behave like fields, their covariances evolve by Lyapunov dynamics, and eigenvalue spikes precede
shared-fate events.
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