Ted’s Law of Karma — Maxwell-Style Formulation

Entropy fields Each metric stream: $h_i(t)$ = rolling Shannon entropy of metric $i$. Stack into vector: $\mathbf{h}(t) \in \mathbb{R}^n$. Covariance field: $\Sigma(t) = \mathrm{Cov}[\mathbf{h}(t)]$. C1. Continuity (balance) of entropy $$ \dot h_i = s_i - \kappa_i h_i - \sum_{j}\nabla!\cdot J_{ij} + \eta_i $$ Sources $s_i$, damping $\kappa_i \ge 0$, fluxes $J_{ij}$, noise $\eta_i$. C2. Constitutive law (flux response) $$ J_{ij} = -D_{ij},(h_j - h_i) \quad\Longrightarrow\quad \dot{\mathbf h} = -\alpha,\mathbf h - \beta,L,\mathbf h + \mathbf s + \boldsymbol\eta $$ ...

September 1, 2025 · 2 min · Ted Strall